
Assume, Guarantee or Repair?

Hadar Frenkel1, Orna Grumberg1, Corina Pasareanu2 and Sarai Sheinvald3

1 Department of Computer Science, The Technion, Israel
2 Carnegie Mellon University and NASA Ames Research Center, CA, USA

3 Department of Software Engineering, ORT Braude College, Israel

Abstract. We present Assume-Guarantee-Repair (AGR) – a novel framework which
not only verifies that a program satisfies a set of properties, but also repairs the pro-
gram, in case the verification fails. We consider communicating programs – these
are simple C-like programs, extended with synchronous communication actions over
communication channels.
Our method, which consists of a learning-based approach to assume-guarantee rea-
soning, preforms the two tasks simultaneously: in every iteration of the procedure, we
either make another step towards proving that the (current) system satisfies the specifi-
cation, or alter the system in a way that brings it closer to satisfying the specification.
We manage handling infinite-state systems by using a finite abstract representation,
and reduce the semantic problems in hand – satisfying complex specifications that
also contain first-order constraints – to syntactic ones, namely membership and equiv-
alence queries for regular languages. We implemented our algorithm and evaluated
it on various examples. Our experiments present compact proofs of correctness and
quick repairs.

1 Introduction
Verification of large-scale systems is a main challenge in the field of formal verification.

Often, the verification process of such a system does not scale well. Compositional verifi-
cation aims to verify small components of a system separately, and from the correctness of
the individual components, to conclude the correctness of the entire system. This, however,
is not always possible, since the correctness of a component often depends on the behavior
of its environment.

The Assume-Guarantee (AG) style compositional verification [20,24] suggests a solu-
tion to this problem. The simplest AG rule checks if a system composed of components M1

and M2 satisfies a property P by checking that M1 under assumption A satisfies P and that
any system containing M2 as a component satisfies A. Several frameworks have been pro-
posed to support this style of reasoning. Finding a suitable assumption A is then a common
challenge in such frameworks.

In this work, we present Assume-Guarantee-Repair (AGR) – a fully automated frame-
work which applies the Assume-Guarantee rule, and while seeking a suitable assumption
A, incrementally repairs the given program in case the verification fails. Our framework
is inspired by [22], which presented a learning-based method to finding an assumption A,
using the L∗ [3] algorithm for learning regular languages.

Our AGR framework handles communicating programs. These are infinite-state C-like
programs, extended with the ability to synchronously read and write messages over commu-
nication channels. We model such programs as finite-state automata over an action alphabet,

? This research was partially supported by the Technion Hiroshi Fujiwara Cyber Security Research
Center, the Israel National Cyber Directorate and the Israel Science Foundation (ISF)

which reflects the program statements. The accepting states in these automata model points
of interest in the program that the specification can relate to. The automata representation
is similar in nature to that of control-flow graphs. Its advantage, however, is in the ability to
exploit an automata-learning algorithm such as L∗.

The composition of the two program components, M1 and M2, denoted M1||M2, syn-
chronizes on read-write actions on the same channel. Between two synchronized actions,
the individual actions of both systems interleave.

1: while(true)
2: x := 0;
3 while(x ≤ 999)
4: password?x;
5: x := x · 10;
6: enter!x;

q0

r1

r2

r2

r4
x := 0

x ≤ 999

password?x

x > 999

x :=x · 10

enter !x

Fig. 1: Modeling a communicating program as an automaton
Figure 1 presents the code of a communicating program (left) and its corresponding au-

tomaton (right). The automaton alphabet consists of constraints (e.g. x ≤ 999), assignment
actions (e.g. x := x · 10), and communication actions (e.g. password?x reads a value to
variable x over channel password, and enter!x writes the value of x on channel enter).

The specification P is also modeled as an automaton, that does not contain assignment
actions. It may contain communication actions in order to specify behavioral requirements,
as well as constraints over the variables of both system components, that express require-
ments on their values in various points in the runs.

Consider, for example, the programs M1, M2, and the specification P seen in Figure 2.
M1 reads a bound on the number of times an action must be performed in M2 (this action
can be, say, a push action on a stack). The variable act inM2 counts the number of times the
action has been performed. M2 performs a sequence of actions, and then reads a value – the
bound of M1 – from M1 through the channel C. If the number of actions it has performed
matches the bound, M2 finishes the current iteration successfully. The property P makes
sure that in the parallel run of the programs the number of actions never exceeds the bound,
and that this number eventually reaches the bound in every iteration. The sync actions here
denote communication actions on which the components synchronize, and are used for the
clarity of the description. Notice that P expresses temporal requirements that contain first
order constraints.

q0
q1

q2

read?bound

bound > 0

C!bound
sync

p0

p1
p2

p3

act := 0

act := act + 1

C?check

act =
check

sync

r0

r1

r2

act <
bound

act =
bound

sync

act > bound

∗

M1 M2 P

Fig. 2: The programs M1, M2, and the specification P

TheL∗ algorithm aims at learning a regular languageU . Its entities consist of a teacher –
an oracle who answers membership queries (“is the wordw inU?”) and equivalence queries
(“is A an automaton whose language is U?”), and a learner, who iteratively constructs

2

a finite deterministic automaton A for U by submitting a sequence of membership and
equivalence queries to the teacher.

In using the L∗ algorithm for learning an assumption A for the AG-rule, membership
queries are answered according to the satisfaction of the specification P : If M1 in parallel
with t satisfies P , then the trace t in hand should be in A. Otherwise, t should not be in A.
Once the learner constructs a stable system A, it submits an equivalence query. The teacher
then checks whether A is a suitable assumption, that is, whether M1||A satisfies P , and
whether the language of M2 is contained in the language of A. According to the results, the
process either continues or halts with an answer to the verification problem. The learning
procedure aims at learning the weakest assumption Aw, which contains all the traces that
in parallel with M1 satisfy P . The key observation that guarantees termination is that the
components in this procedure – M1,M2, P and Aw – are all regular.

Our setting is more complicated, since the traces in the components – both the programs
and the specification – contain constraints, which are to be checked semantically and not
syntactically. These constraints may cause some traces to become infeasible. For example,
if a trace contains an assignment x := 3 followed by a constraint x ≥ 4 (modeling an
“if” statement), then this trace does not contribute any concrete runs, and therefore does not
affect the system behavior. Thus, we must add feasibility checks to the process.

Constraints in the specification also pose a difficulty, as satisfiability of a specification
is determined by the semantics of the constraints and not just by the syntax of the language,
and hence there is more here to check than standard language containment. Moreover, Aw
above may no longer be regular, see Example 3. However, our method manages to overcome
this problem in a way that still guarantees termination in case the verification succeeds, and
progress, otherwise.

As we have described above, not only do we construct a learning-based method for the
AG-rule for communicating programs, but we also repair the programs in case the verifi-
cation fails. An AG-rule can either conclude that M1||M2 � P (M1||M2 satisfies P), or
return a real, non-spurious counterexample of a computation of M1||M2 that violates P . In
our case, instead of returning the counterexample, we repairM2 in a way that eliminates this
counterexample. We do so by using abduction [23] to infer a new constraint which makes
the counterexample infeasible. Consider again the program M2 of Figure 2. Suppose that
the transition labeled C?check from p1 would go directly to p3 instead of passing through
p2. Then M1||M2 2 P , since without the constraint act = check, the number of actions
may be different (say, larger) from the bound when reaching p3. Our algorithm will find a
bad trace during the AG stage which will capture this bad behavior, and the abduction in
the repair stage will add a constraint that eliminates it, say act ≤ check, and add it after the
C?check action in M2.

Following this step we now have an updated M2, and we continue with applying the
AG-rule again, using information we have gathered in the previous steps. In addition to
removing the error trace, we update the alphabet of M2 with the new constraint.

Continuing our example, in a following iteration AGR will then find another trace – one
in which there are too few actions – and add another constraint, say act ≥ check, which
results in a desired repaired program M ′2.

Thus, AGR operates in a verify-repair loop, where each iteration runs a learning-based
process to determine whether the (current) system satisfies P , and if not, eliminates bad
behaviors from M2 while enriching the set of constraints derived from these bad behaviors,
which often leads to quicker convergence. In case the current system does satisfy P , we

3

return the repairedM2 together with an assumptionA that abstractsM2 and acts as a smaller
proof for the correctness of the system.

We have implemented a tool for AGR and evaluated it on examples of various sizes and
of various types of errors. Our experiments show that for most examples, AGR converges
and find repair after 2-5 iterations of verify-repair. Moreover, our tool generates assumptions
that are significantly smaller then the (possibly repaired) M2, thus constructing a compact
and efficient proof of correctness.

Contributions To summarize, the main contributions of this paper are:
1. A learning-based Assume-Guarantee algorithm for infinite-state communicating pro-

grams, which manages to overcome the difficulties such programs present. In particular,
our algorithm overcomes the inherent irregularity of the first-order constraints in these
programs, and offers syntactic solutions to the semantic problems they impose.

2. An Assume-Guarantee-Repair algorithm, in which the Assume-Guarantee and the Re-
pair procedures intertwine to produce a repaired program which, due to our construc-
tion, maintains many of the “good” behaviors of the original program. Moreover, in case
the original program satisfies the property, our algorithm is guaranteed to terminate and
return this conclusion.

3. An incremental learning algorithm that uses query results from previous iterations in
learning a new language with a richer alphabet.

4. A novel use of abduction to repair communicating programs over first order constraints.
5. An implementation of our algorithm, demonstrating the effectiveness of our framework.

Related Work Assume-guarantee style compositional verification [20,24] has been exten-
sively studied. The assumptions necessary for compositional verification were first produced
manually, limiting the practicality of the method.

More recent works [7,14,12,4] proposed techniques for automatic assumption genera-
tion using learning and abstraction refinement techniques, making assume-guarantee verifi-
cation more appealing. In [22,4] alphabet refinement has been suggested as an optimization,
to reduce the alphabet of the generated assumptions, and consequently their sizes. This op-
timization can easily be incorporated in our framework as well.

Other learning-based approaches for automating assumption generation have been de-
scribed in [5,15,6]. All these works addresses non-circular rules and are limited to finite
state systems. Automatic assumption generation for circular rules is presented in [10,11],
using compositional rules similar to the ones studied in [19,21].

Our approach is based on a non-circular rule but it targets complex, infinite-state concur-
rent systems, and addresses not only verification but also repair. The compositional frame-
work presented in [17] addresses L∗-based compositional verification and synthesis but it
only targets finite state systems.

Also related is the work in [16], which addresses automatic synthesis of circular com-
positional proofs based on logical abduction; however the focus of that work is sequential
programs, while here we target concurrent programs. A sequential setting is also considered
in [1], where abduction is used for automatically generating a program environment. Our
computation of abduction is similar to that of [1]. However, we require our constraints to be
over a predefined set of variables, while they look for a minimal set.

The approach presented in [25] aims to compute the interface of an infinite-state com-
ponent. Similar to our work, the approach works with both over- and under- approximations
but it only analyzes one component at a time. Furthermore, the component is restricted to be

4

deterministic (necessary for the permissiveness check). In contrast we use both components
of a system to compute the necessary assumptions, and as a result they can be much smaller
than in [25]. Furthermore, we do not restrict the components to be deterministic and, mainly,
we also address the system repair (in case of dissatisfaction).

2 Communicating Programs
In this section we present the notion of communicating programs. These are C-like pro-

grams, extended with the ability to synchronously read and write messages over commu-
nication channels. We model such programs as automata over an action alphabet that re-
flects the program statements. The alphabet includes constraints, which are quantifier-free
first-order formulas, representing the conditions in if and while statements. It also includes
assignment statements and read and write communication actions. The automata repre-
sentation is similar in nature to that of control-flow graph. Its advantage, however, is in the
ability to exploit an automata-learning algorithm such as L∗ for its verification.

We first formally define the alphabet over which communicating programs are defined.
LetG be a finite set of communication channels. LetX be a finite set of variables (whose or-
dered vector is x̄) and D be a (finite or infinite) data domain. For simplicity, we assume that
all variables are defined over D. The elements of D are also used as constants in arithmetic
expressions and constraints.
Definition 1. An action alphabet is α = G ∪ E ∪ C where:
1. G ⊆ { g?x1, g!x1, (g?x1, g!x2), (g!x1, g?x2) |g ∈ G, x1, x2 ∈ X} is a finite set of

communication actions. g?x is a read action of a value to the variable x through chan-
nel g, and g!x is a write action of the value of x on channel g. We use the notation g ∗x
to indicate some action, either read or write, through g. The pairs (g?x1, g!x2) and
(g?x1, g!x2) represent a synchronization of two programs on read-write actions over
channel g (to be defined later).

2. E ⊆ { x := e | e ∈ E, x ∈ X} is a finite set of assignment statements, where E is a set
of arithmetic expressions over X ∪D.

3. C is a finite set of constraints over X ∪D.

Definition 2. A communicating program (or, a program) isM = 〈Q,X,α, δ, q0, F 〉, where:
1. Q is a finite set of states and q0 ∈ Q is the initial state.
2. X is a finite set of variables that range over D.
3. α = G ∪ E ∪ C is the action alphabet of M .
4. δ ⊆ Q× α×Q is the transition relation.
5. F ⊆ Q is the set of accepting states.

The words that are read along a communicating program are a symbolic representation
of the program behaviors. We refer to such a word as a trace. Each such trace induces
concrete runs of the program, which are formed by concrete assignments to the program
variables in a way that conforms with the actions along the word.

We now formally define these notions.

Definition 3. A path in a programM is a finite sequence of states and actions p = (q0, a1, q1, . . . , an, qn),
starting with the initial state q0, such that ∀0 ≤ i < n we have (qi, ai+1, qi+1) ∈ δ. The
induced trace of p is the sequence t = (a1, . . . , an) of the actions in p. If qn is accepting,
then t is an accepted trace of M .

From now on we assume that every trace we discuss is induced by some path. We turn
to define the concrete runs of the program.

5

Definition 4. Let t = (a1, . . . , an) be a trace and let (β0, . . . , βn) be a sequence of valua-
tions (i.e., assignments to the program variables)4. Then a sequence r = (β0, a1, β1, a2, . . . , an, βn)
is a run of t if the following holds.
1. β0 is an arbitrary valuation.
2. If ai = g?x, then βi(y) = βi−1(y) for every y 6= x. Intuitively, x is arbitrarily assigned

by the read action, and the rest of the variables are unchanged.
3. If ai is an assignment x := e, then βi(x) = e[x̄ ← βi−1(x̄)] and βi(y) = βi−1(y) for

every y 6= x.
4. If ai = (g?x, g!y) then βi(x) = βi−1(y) and βi(z) = βi−1(z) for every z 6= x. That is,

the effect of a synchronous communication on a channel is that of an assignment.
5. If ai does not involve a read or an assignment, then βi = βi−1.
6. Finally, if ai ∈ C (that is, ai is a constraint) then βi(x̄) � ai.

We say that t is feasible if there exists a run of t.

The symbolic language of M , denoted T (M), is the set of all accepted traces induced
by paths of M . The concrete language of M is the set of all runs of accepted traces in
T (M). We will mostly be interested in feasible traces, which represent (concrete) runs of
the program.

Example 1. – The trace (x := 2 · y, g?x, y := y + 1, g!y) is feasible, as it has a run
(x = 1, y = 3), (x = 6, y = 3), (x = 20, y = 3), (x = 20, y = 4), (x = 20, y = 4).

– The trace (g?x, x := x2 , x < 0) is not feasible since no β can satisfy the constraint
x < 0 if x := x2 is executed beforehand.

2.1 Parallel Composition

We now describe and define the parallel run of two communicating programs, and the
way in which they communicate.

Let M1 and M2 be two programs, where Mi = 〈Qi, Xi, αi, δi, q0
i, Fi〉 for i = 1, 2. Let

G1, G2 be the sets of communication channels occurring in actions ofM1,M2, respectively.
We assume X1 ∩X2 = ∅.

The interface alphabet αI of M1 and M2 consists of all communication actions on
channels that are common to both components. That is, αI = { g?x, g!x | g ∈ G1∩G2, x ∈
X1 ∪X2}.

In parallel composition, the two components synchronize on their communication inter-
face only when one component writes data through a channel, and the other reads it through
the same channel. The two components cannot synchronize if both are trying to read or
both are trying to write. We distinguish between communication of the two components
with each other (on their common channels), and their communication with their environ-
ment. In the former case, the components must “wait” for each other in order to progress
together. In the latter case, the communication actions of the two components interleave
asynchronously.
Formally, the parallel composition of M1 and M2, denoted M1||M2, is the program M =
〈Q, x, α, δ, q0, F 〉, defined as follows.
1. Q = (Q1 × Q2) ∪ (Q′1 × Q′2), where Q′1 and Q′2 are new copies of Q1 and Q2,

respectively. The initial state is q0 = (q10 , q
2
0).

2. X = X1 ∪X2.
4 Such valuations are usually referred to as states. We do not use this terminology here in order not

to confuse them with the states of the automaton.

6

3. α = { (g?x1, g!x2), (g!x1, g?x2) | g ∗x1 ∈ (α1∩αI) and g ∗x2 ∈ (α2∩αI)}∪ ((α1∪
α2) \ αI). That is, the alphabet includes pairs of read-write communication actions on
channels common to M1 and M2. It also includes individual actions of M1 and M2,
which are not communications on common channels.

4. δ is defined as follows.
(a) For (g ∗ x1, g ∗ x2) ∈ α:

i. δ((q1, q2), (g ∗ x1, g ∗ x2)) = (q′1, q
′
2).

ii. δ((q′1, q
′
2), x1 = x2) = (δ1(q1, g ∗ x1), δ2(q2, g ∗ x2)).

That is, when a communication is performed synchronously in both components,
the data is transformed through the channel from the writing component to the
reading component. As a result, the values of x1 and x2 equalize. This is enforced
in M by adding a transition labeled with the constraint x1 = x2 that immediately
follows the transition of the synchronous communication.

(b) For a ∈ α1 \ αI we define δ((q1, q2), a) = (δ1(q1, a), q2).
(c) For a ∈ α2 \ αI we define δ((q1, q2), a) = (q1, δ2(q2, a)).
That is, on actions that are not in the interface alphabet, the two components interleave.

5. F = F1 × F2

Figure 3 demonstrates the parallel composition of components M1 and M2. The pro-
gramM = M1||M2 reads a password from the environment through channel pass . The two
components synchronize on channel verify . Assignments to x are interleaved with reading
the value of y from the environment.

p0 p1

verify?x

x :=x · 2

q0 q1

pass?y

verify !y

(q0,p0)

(q0,p1)

(q1,p0)

(q1,p1)

(q′1,p
′
1)

pass?y

pass?y

x :=x · 2 x :=x · 2

(verify?x, verify!y)

x = y

M1 M2 M1||M2

Fig. 3: Components M1 and M2 and their parallel composition M1||M2.

3 Regular Properties and Their Satisfaction
In this section we define the syntax and semantics of the properties that we consider.

We consider properties that can be represented as a finite automaton, hence the name reg-
ular. However, the language of such an automaton consists of words over an alphabet that
includes communication actions as well as first-order constraints over program variables.
Thus, the language is suitable for specifying the desired and undesired behaviors of a com-
municating program over time.

In order to define our properties, we first need the notion of a deterministic and com-
plete program. The definition is somewhat different from the standard definition for finite
automata, since it takes the semantic meaning of constraints into account.

Intuitively, in a deterministic and complete program, every concrete run has exactly one
trace which induces it.

Definition 5. A program over alphabet α is deterministic and complete if for every state q
and for every action a ∈ α the following hold:

7

1. There is exactly one state q′ such that (q, a, q′) is in δ.5

2. If (q, c1, q
′) and (q, c2, q

′′) are in δ for constraints c1, c2 ∈ C and q′ 6= q′′, then c1∧c2 ≡
false.

3. Let Cq be the set of all constraints on transitions leaving q, then (
∨
c∈Cq

c) ≡ true .

A property is a deterministic and complete program with no assignment actions.
A trace is accepted by a property P if the unique run on this trace reaches a state in F ,

the set of accepting states of P . Otherwise, it reaches a state in B, the set of rejecting states
of P , and is rejected by P .

Next, we define the satisfaction relation � between a program and a property. Intuitively,
a program M satisfies a property P (denoted M � P) if all runs induced by accepted traces
of M reach an accepting state in P .

A property P specifies the behavior of a program M by referring to communication
actions of M and imposing constraints over the variables of M . Thus, the set of variables
of P is identical to that of M . Let G be the set of communication actions of M . Then, αP
includes a subset of G as well as constraints over the variables ofM . The interface ofM and
P is defined as αI = G ∩ αP . Thus, the interface consistes of the communication actions
that occur in P .

In order to capture the satisfaction relation between M and P , we define a conjunc-
tive composition between M and P , denoted M × P . In the conjunctive composition, the
two components synchronize on their common communication actions when both read or
both write through the same communication channel. They interleave on constraints and on
actions of αM that are not in αP .

Definition 6. LetM = 〈QM , XM , αM, δM , q
M
0 , FM 〉 be a program andP = 〈QP , XP , αP, δP , q

P
0 , FP 〉

be a property, where XM = XP . The conjunctive composition of M and P is M × P =
〈Q,X,α, δ, q0, F 〉, where:
1. Q = QM ×QP . The initial state is q0 = (qM0 , qP0).
2. X = XM = XP .
3. α = { g!x, g?x, (g?x, g!y), (g!x, g?y) | g∗x, (g∗x, g∗y) ∈ αI}∪((αM∪αP)\αI))6.

That is, the alphabet includes communication actions on channels common to M and
P . It also includes individual actions of M and P .

4. δ is defined as follows.
(a) For a = (g∗x, g∗y) ∈ αI , or a = g∗x ∈ αI: δ((q1, q2), a) = (δM (q1, a), δP (q2, a)).
(b) For a ∈ αM \ αI: δ((q1, q2), a) = (δM (q1, a), q2).
(c) For a ∈ αP \ αI: δ((q1, q2), a) = (q1, δP (q2, a)).
That is, on actions that are not common communication actions to M and P , the two
components interleave.

5. F = FM ×BP .

Note that accepted traces inM×P are those that are accepted inM and rejected in P . Such
traces are called error traces and their corresponding runs are called error runs. Intuitively,
an error run is a run along M which violates the properties modeled by P . Such a run either
fails to synchronize on the communication actions, or reaches a point in the computation in
which its assignments violate some constraint described by P . These runs are manifested in

5 in our examples we sometimes omit the actions that lead to a rejecting sink for the sake of clarity.
6 Note that communication actions of the form (g ∗ x, g ∗ y) can only appear if M is a parallel

composition of two programs.

8

the traces that are accepted in M but are composed with matching traces that are rejected in
P . We can now formally define when a program satisfies a property.

Definition 7. For a program M and a property P , we define M � P iff M × P contains
no feasible accepted traces.

Thus, a feasible error trace in M × P is an evidence to M 6� P , since it indicates the
existence of a run that violates P .

Example 2. Consider the program M , the property P and a partial construction of M × P
presented in Figure 4. P requires every verified password y to be of length at least 4. It is
easy to see that M 2 P , since the trace t = (password?y, y > 0, verify !y, y < 1000)
is a feasible error trace in M × P . Note that from state (q0, r1) it is possible to continue
to (q1, r1) with a transition of M in which a new password y is entered. In that case, if
y < 1000, it is not an error trace since the new password y has not been verified yet.

q0 q2

q1

verify !y

password?y y > 0 r0 r1

r2

verify !y

y ≥ 1000
y < 1000

∗

(q0,r0) (q2,r0)

(q1,r0)

(q0,r1)

(q0,r2)(q1,r1)(q1,r2)

password?y y > 0

verify !y

y < 1000

y ≥ 1000

password?y

y<1000

M P partial M × P

Fig. 4: Partial conjunctive composition of M and P .

4 The Assume-Guarantee-Repair (AGR) Framework
In this section we discuss our Assume-Guarantee-Repair (AGR) framework for com-

municating programs. The framework consists of a learning-based Assume-Guarantee al-
gorithm, called AGL∗ , and a REPAIR procedure, which are tightly joined.

Let M1 and M2 be two programs, and let P be a property. The classical Assume-
Guarantee (AG) proof rule [24] assures that if we find an assumption A (in our case, a
communicating program) such that M1||A � P and M2 � A both hold, then M1||M2 � P
holds as well. For LTSs [7], the AG-rule is guaranteed to either prove correctness or return
a real (non-spurious) counterexample. The work in [7] relies on the L∗ algorithm [3] for
learning an assumption A for the AG-rule. In particular, L∗ aims at learning Aw, the weak-
est assumption for which M1||Aw � P . A crucial point of this method is the fact that Aw is
regular [13], thus can be learned by L∗.

Lemma 1. For infinite-state communicating programs, the weakest assumption Aw is not
always regular.

Example 3. Consider the programs M1,M2 and the property P of Figure 5. The weakest
assumption with which M1 satisfies P should contain exactly all traces (over the alphabet
of M2) that contain equally many actions of the form x := x + 1 and y := y + 1. This set
of traces is not regular, and therefore cannot be learned by L∗.

9

q0 q1sync

true
p0

p1

p2
p3

x := 0 y := 0
x := x+ 1
y := y + 1

sync

true

r0

r1 r2

r3

sync x=y

truex 6= y ∗

M1 M2 P

Fig. 5: A system for which the weakest assumption is not regular.

To cope with this difficulty, in our AGL∗ algorithm we change the goal to learning M2

which is regular, as it is an automaton. Note that in case that M1||M2 � P , repair is never
needed, and M2 is a valid assumption. In the worst case, the procedure halts once it has
learned M2. If M1||M2 2 P then there does not exist a matching assumption, and attempt-
ing to learn M2 will reveal this. Therefore, using T (M2) as a learning goal matches the AG
rule. The nature of AGL∗ is such that the assumptions it learns before it reaches M2 may
contain the traces of M2 and more, but still be represented by a smaller automaton. There-
fore, similarly to [7], AGL∗ often terminates with an assumption A that is much smaller
than M2. Indeed, our tool often produces very small assumptions (see Section 5).

As mentioned before, not only that we determine whether M1||M2 � P , but we also
repair the program in case it violates the specification. When M1||M2 2 P , the AGL∗
algorithm returns an error trace t as a witness for the violation. In this case, we initiate the
REPAIR procedure, which eliminates t from M2. Moreover, REPAIR applies abduction in
order to learn a new constraint which, when added to t, creates an infeasible trace. The new
constraint enriches the alphabet in a way which may make similar traces infeasible as well.
We elaborate on our use of abduction in Section 4.2. The removal of t and the addition of
the new constraint result in a new goal M ′2 for AGL∗ to learn. We now return to AGL∗ to
search for a new assumption A′ that allows to verify M1||M ′2 � P .

An important feature of our AGR algorithm is its incrementality. When learning an
assumption A′ for M ′2 we can use the membership queries previously asked for M2, since
the answer for them has not been changed. See Appendix for a proof that the difference
between the languages of M2 and M ′2 lies in words (traces) whose membership has not
yet been queried on M2. This allows the learning of M ′2 to start from the point where the
previous learning has left off, resulting in a more efficient algorithm.

As opposed to the case where M1||M2 � P , we cannot guarantee the termination of
the repair process in case M1||M2 2 P . This, since we are only guaranteed to remove one
(bad) trace and add one (infeasible) trace in every such iteration (although in practice, every
iteration may remove a larger set of traces. See Section 4.3). Thus, we may never converge to
a regular repaired system. Nevertheless, in case of property violation, our algorithm always
finds an error trace, thus a progress towards a “less erroneous” program is guaranteed.

It should be noted that the AGL∗ part of our AGR algorithm deviates from the AG-rule
of [7] in two important ways. First, since the goal of our learning is M2 rather than Aw,
our membership queries are different in type and order. Second, in order to identify real
error traces and send them to REPAIR as early as possible, we add additional queries to
the membership phase that reveal such traces. We then send them to REPAIR without ever
passing through equivalence queries. The resulting process is thus more efficient. Indeed,

10

in our experiments we encountered several cases in which all repairs were invoked from
the membership phase. Then, AGR got to the equivalence query only when the repaired
component M ′2 already guaranteed M1||M ′2 � P and terminated successfully.

4.1 The Assume-Guarantee-Repair (AGR) Algorithm

We now describe our AGR algorithm in more detail (see Algorithm 1). Figure 6 describes
the flow of the algorithm. AGR comprises two main parts, namely AGL∗ and REPAIR.

The input to AGR are the componentsM1 andM2, and the property P . WhileM1 and P
stay unchanged during AGR, M2 keeps being updated as long as the algorithm recognizes
that it needs repair (we can bound the number of iterations, as we discuss in Section 4.4).

The algorithm works in iterations, where in every iteration the next updated M i
2 is cal-

culated, starting with iteration i = 0, where M0
2 = M2. An iteration starts with the mem-

bership phase in line 2, and ends either when AGL∗ successfully terminates (line 16) or
when procedure REPAIR is called (lines 7 and 24). When a new system M i

2 is constructed,
AGL∗ does not start from scratch. The information that has been used in previous iterations
is still valid for M i

2. The new iteration is given additional new trace(s) that have been added
or removed from the previous M i

2 (lines 9,11,20, 27).
AGL∗ consists of two phases: membership, and equivalence.
The membership phase (lines 2-11) consists of a loop in which the learner constructs

the next assumption Aij according to answers it gets from the teacher on a sequence of
membership queries on various traces. These queries are answered with accordance to traces
we allow in Aij : traces in M i

2 that in parallel with M1 satisfy P . If a trace t in M i
2 in parallel

with M1 does not satisfy P , then t is a bad behavior of M2. Therefore, if such a t is found
during the membership phase, REPAIR is invoked.

Once the learner reaches a stable assumption Aij , it passes it to the equivalence phase
(lines 12-27). Aij is a suitable assumption if both M1||Aij � P and T (M i

2) ⊆ T (Aij) hold.
In this case, AGR terminates successfully and returns M i

2 as a successful repair of M2. If
M1||Aij 2 P , then a counterexample t is returned, that is composed of bad traces inM1, A

i
j ,

and P . If the bad trace t2 in Aij is also in M i
2, then t2 is a bad behavior of M i

2, and here too
the REPAIR phase is invoked. Otherwise, AGR returns to the membership phase with t2 as
a counter example for Aij , and continues to learn it.

As we have described, REPAIR is called when a bad trace t is found in (M1||M i
2)× P

and should be removed. If t contains no constraints then its sequence of actions is illegal
and its subtrace t2 from M i

2 should be removed from M i
2. In this case, REPAIR returns to

AGL∗ with a new goal M i+1
2 ⊆M i

2 \ {t2} to be learned, along with the answer “no” to the
membership query on t2. In 4.3 we discuss different methods for removing t2 from M i

2.
The more interesting case is when t contains constraints. In this case, we not only re-

move the matching t2 fromM i
2, but also add a new constraint c to the alphabet, which causes

t2 to be infeasible. This way we eliminate t2, and may also eliminate a family of bad traces
that violate the property in the same manner. We deduce c using abduction, see Section 4.2.
As before, REPAIR returns to AGL∗ with a new goal to be learned, but now also with an
extended alphabet. The membership phase is then provided with two new answers to the
membership query: t2 that should not be included in the new assumption, and (t2 · c) that
should be included.

Incremental learning One of the advantages of AGR is that it is incremental, in the sense
that membership answers from previous iterations remain unchanged for the repaired sys-

11

tem. Indeed, since this is the first time that AGL∗ queries t2, we can return to AGL∗ with
the answer t2 /∈ T (M i+1

2), without contradicting any previous queries. In addition, t′2 ob-
tained by abduction is a new word (over a new alphabet), which was also not queried earlier.
Therefore, we can incrementally add t2 and t′2 as answers from the teacher, and continue to
use answers from previous queries on all other traces.

Algorithm 1 AGR
1: function AGL∗

2: //Membership Queries
3: Let t2 ∈ (αM i

2)
∗.

4: if t2 ∈ T (M i
2) then

5: if M1||t2 2 P then
6: Let t ∈ (M1||t2)× P be an error trace. . t is a cex proving M1||M i

2 2 P
7: REPAIR(M i

2, t)
8: else . M1||t2 � P
9: Return to AGL∗ in Line 2 with t2 ∈ T (Ai

j).

10: else . t2 /∈ T (M i
2)

11: Return to AGL∗ in Line 2 with t2 /∈ T (Ai
j).

12: //Equivalence Queries
13: Let Ai

j be the candidate assumption generated by the learner.
14: if M1||Ai

j � P then
15: if T (M i

2) ⊆ T (Ai
j) then

16: Terminate and return M1||M i
2 � P .

17: else
18: Let t2 ∈ T (M i

2) \ T (Ai
j).

19: Set j := j + 1
20: Return to AGL∗ in Line 2 with t2 ∈ T (Ai

j).

21: else . M1||Ai
j 2 P

22: let t ∈ (M1||Ai
j)× P be an error trace, and denote t = (t1||tA)× tP .

23: if tA ∈ T (M i
2) then

24: REPAIR(M i
2, tA) . tA is a cex proving M1||M i

2 2 P
25: else
26: Set j := j + 1.
27: Return to AGL∗ in Line 2 with tA /∈ T (Ai

j).

28: function REPAIR(M i
2, t)

29: Let t1 ∈M1, t2 ∈M i
2, tp ∈ P such that t = (t1||t2)× tp.

30: if t does not contain constraints then
31: Return to AGL∗ in Line 2 with M i+1

2 = T (M i
2) \ {t2} and t2 /∈ T (Ai+1

0).
32: else . t contains constraints
33: Use abduction to eliminate t.
34: Let c be the new constraint learned during abduction.
35: Update αM i+1

2 = αM i
2 ∪ {c}.

36: Let t′2 = t2 · c be the output of the abduction
37: Return to AGL∗ in Line 2 with M i+1

2 = (T (M i
2) \ {t2}) ∪ {t′2},

38: and t2 6∈ T (Ai+1
0), t′2 ∈ T (Ai+1

0)

4.2 Repair by Abduction

We now describe the repair we apply toM i
2, in case the error trace t contains constraints

(see Algorithm 1, line 32). Error traces with no constraints are removed from M i
2 syntacti-

cally (line 31), while in abduction we semantically eliminate t by making it infeasible. The

12

(Step 1) 𝑡2 ∈ Τ 𝑀2
𝑖

(Step 2) 𝑀1 ∥ 𝑡2 ⊨ 𝑃

𝑡𝑟𝑢
𝑒

𝑐 ←abduction on 𝑡
𝑡2
′ ← 𝑡2 ⋅ 𝑐

Generate

Assumption Loop

𝑡2 ∉ 𝐴𝑗
𝑖

𝑓𝑎𝑙𝑠𝑒

Membership

abductionRepair

𝑨𝑮𝑳∗

𝑡A ∈ Τ(𝑀2
𝑖)

cex 𝑡

cex 𝑡 ∈ (𝑡1| 𝑡𝐴 × 𝑃

𝑡𝑟𝑢𝑒
𝑡2 ∈ 𝐴𝑗

𝑖

Equivalence

(Step 1) 𝑀1||𝐴𝑗
𝑖 ⊨ 𝑃

(Step 2) 𝑇 𝑀2
𝑖 ⊆ 𝑇(𝐴𝑗

𝑖)

𝑡𝑟
𝑢
𝑒

𝑓
𝑎
𝑙𝑠𝑒

𝑀1||𝑀2
i ⊨ 𝑃

cex 𝑡 ∈ 𝐴𝑗+1
𝑖 𝑡𝑟𝑢𝑒

𝑓
𝑎
𝑙𝑠𝑒

𝑡𝑟𝑢
𝑒

𝑡2 ← 𝑡𝐴
∃𝑐 ∈ 𝑡

𝑓
𝑎
𝑙𝑠
𝑒

𝑡2 ∉ 𝐴0
𝑖+1

𝑓𝑎𝑙𝑠𝑒

𝑡2
′ ∈ 𝐴0

𝑖+1

𝑡2 ∉ 𝐴𝑗
𝑖

𝑡𝐴 ∉ Τ(𝐴𝑗+1
𝑖)

𝐴𝑗
𝑖

AGR 𝑀1, 𝑀2, 𝑃

𝑖, 𝑗 ← 0

𝑡2

𝑓𝑎𝑙𝑠𝑒

𝑡𝑟𝑢𝑒

Fig. 6: The flow of AGR

new constraints are then added to the alphabet of M i
2 in a way that may eliminate additional

erroronous traces. Note that the constraints added by abduction can only restrict the behav-
ior of M2, making more traces infeasible. As a result, counterexamples are never added to
M2 in this process.

The process of inferring new constraints from known facts about the program is called
abduction [9]. We now describe how we apply it. Given a trace t, let ϕt be the first-order
formula (a conjunction of constraints), which constitute the SSA representation of t [2]. In
order to make t infeasible, we look for a formula ψ such that ψ ∧ ϕt → false7.

Note that t ∈ T (M1||M i
2) × P , and so it includes variables both from X1, the set of

variables of M1, and from X2, the set of variables of M i
2. Since we wish to repair M i

2, the
learned ψ is over the variables in X2 only.

The formula ψ ∧ ϕt → false is equivalent to ψ → (ϕt → false). Then, ψ = ∀x ∈
X1(ϕt → false) = ∀x ∈ X1(¬ϕt), is such a desired constraint: ψ makes t infeasible and
is defined only over X2. We now use quantifier elimination [26] to produce a quantifier-free
formula over X2. Computing ψ is similar to the abduction suggested in [9], but the focus
here is on finding a formula over X2 rather than over any minimal set of variables. We use
Z3 [8] to apply quantifier elimination and to generate the new constraint. After generating
ψ(X2), we add it to the alphabet of M i

2 (line 35 of Algorithm 1). In addition, we produce a
new trace t′2 = t2 · ψ(X2). The trace t′2 is returned as the output of the abduction.

Lemma 2. Let t = (t1||t2)× tP . Then if t2 is infeasible, t is infeasible as well.

This is due to the fact that tp can only restrict the behaviors t1 and t2, thus if t2 is infeasi-
ble, t cannot be made feasible. See Appendix for a formal proof. Therefore, by making t2
infeasible, we eliminate the error trace t.

In order to add t2 · ψ(X2) to M i
2 while removing t2, we split the state q that t2 reaches

in M i
2 into two states q, q′, and add a transition labeled ψ(X2) from q to q′, where only q′

is now accepting. Thus, we eliminated a violating trace from M1||M i
2. AGR now returns

to AGL∗ in order to learn an assumption for the repaired component M i+1
2 , which now

includes t′2 but not t2.
7 Usually, in abduction, we look for ψ such that ψ ∧ ϕt is not a contradiction. In our case, however,

since ϕt is a violation of the specification, we want to infer a formula that makes ϕt unsatisfiable.

13

4.3 Removal of Error Traces

Recall that the goal of REPAIR is to remove a bad trace t from M2 once it is found
by AGL∗ . If t contain constraints, we remove it by using abduction (see Section 4.2). If t
does not contains constraints, we can remove it by computing a system whose language is
T (M2) \ {t}. However, removing a single trace at a time may lead to slow convergence,
and to an exponential blow-up in the repaired systems. Moreover, as we have discussed, in
some cases there are infinitely many such traces, in which case AGR may never terminate.

For quicker convergence, we have implemented two additional heuristics for removing
error traces that do not contain constraints. These heuristics may remove more than a single
trace at a time, while keeping the size of the systems small. While “good” traces may be
removed as well, this does not affect the correctness of the repair, since no bad traces are
added. Moreover, an error trace is likely to be in an erroneous part of the system, and in
these cases our heuristics manage removing a set of error traces in a single step.

On top of the exact method we have described above, we have implemented two addi-
tional methods: approximate and aggressive. We briefly survey these three methods.

– Exact. To eliminate only t from M2, we construct a program (an automaton) for all
traces except for t and intersect it with M2.

– Approximate. Similarly to our repair via abduction in Section 4.2, we prevent the last
transition that t takes from reaching an accepting state. To do so, we duplicate q, the
state that t reaches, to create a new accepting state q′, to which all in-going transitions
to q are diverted, except for the last transition on t. We then remove q from the set
of accepting states. This way, some traces that lead to q are preserved by reaching q′

instead, and some traces that share the last transition of t are eliminated along with t.
As we have argued, these transitions may also be erroneous.

– Aggressive. In this simple method, we remove the state q that t reaches from the set of
accepting states. This way we eliminate t along with all other traces that lead to q. In
case that every accepting state is covered by some error trace, this repair might result in
an empty language, creating a trivial repair. However, our experiments show that while
this may happen, in most cases this method quickly leads to a non-trivial repair.
As we have explained, since all three methods only remove traces from M2 without

adding new ones, the resulting repair is guaranteed to be valid.

4.4 Correctness and Termination

As we have discussed in the beginning of Section 4, AGR is not guaranteed to terminate,
and there are cases where the REPAIR stage may be called infinitely often. Since commu-
nicating programs use first-order constraints, the problem is undecidable, and so one cannot
hope for a sound and complete algorithm. However, in case that no repair is needed, or if a
repaired system is obtained after finitely many calls to REPAIR, then AGR is guaranteed to
terminate with a correct answer.

To see why, consider a repaired system M i
2 for which M1||M i

2 � P . Since the goal of
AGL∗ is to syntactically learn M i

2, which is regular, this stage will terminate at the latest
when AGL∗ learns exactly M i

2, and check for satisfaction (it may terminate sooner if a
richer satisfying assumption is found). Notice that, in particular, if M1||M2 � P , then AGR
terminates with a correct answer in the first iteration of the verify-repair loop.

REPAIR is only invoked when a (real) error trace t is found in M i
2, in which case a

new system M i+1
2 , that does not include t, is produced by REPAIR. If M1||M i

2 2 P , then
an error trace is guaranteed to be found by AGL∗ either in the membership or equivalence

14

phase. Therefore, also in case of dissatisfaction, the iteration is guaranteed to terminate. To
conclude, we have the following.

Theorem 1. – An iteration i of AGR ends with an error trace t iff M1||M i
2 2 P , where

M i
2 is the repaired system at iteration i.

– If, after finitely many iterations, a repaired program M ′2 is such that M1||M ′2 � P , then
AGR terminates with a correct answer.

We have shown that every iteration of AGR by itself is guaranteed to terminate with a
correct answer. The detailed correctness proofs are in the Appendix.

Moreover, AGR is incremental, in the sense that every repaired system M ′2 that is pro-
duced by REPAIR is guaranteed to contain less bad traces than the previous system in the
previous iteration.

Notice that if there are finitely many error traces in M2, then AGR is guaranteed to
terminate with a correct answer. Indeed, every iteration of AGR finds and removes an error
trace t, and no new erroneous traces are introduced in the system post REPAIR. Therefore,
finitely many error traces lead to the termination of AGR with a correctly repaired system.

Nevertheless, there are cases in which there are infinitely many error traces, causing our
algorithm not to terminate. To avoid divergence in such cases, we specify a bound k and
stop AGR after k iterations. If the last iteration resulted in Akj such that M1||Akj � P , then
we can return a program whose traces are T (M2) ∩ T (Akj), which is a valid repair.

5 Experimental Results
We implemented our AGR framework in Java, integrating L∗ implementation from the

LTSA tool [18]. We used Z3 [8] for verification and abduction. For each of the examples
needed repair, we tested the three repair methods: aggressive, approximate and exact. Fig-
ure 7 presents comparisons between the three methods in terms of run-time and the size of
the repair. Table 1 consists results of AGR on various examples. Column Iterations stands
for the number of iterations of the verify-repair loop, until a repaired M2 is achieved.

error1
error2

error3
error4

cl2 c err

cl4 c err

cl1 err cons

cl2 err cons

infiniteBugs

102

103

104

80

106
130

150

690

6,630

340

1,070

9090

126 138
170

280

5,940

370

1,120

210

108
132

165

223

4,270

12,870

448

1,260

tim
e

(m
s)

aggress.
apporx.
exact

error1
error2

error3
error4

cl2 c err

cl4 c err

cl1 err cons

cl2 err cons

infiniteBugs

101

102

103

3

27

81

243

16

256

4

18

44

28

82

244

18

257

4

18

89

81

243

729
864

1,280

4

18R
ep

ai
rs

iz
e

aggress.
apporx.
exact

Fig. 7: Comparing repair methods: time and repair size. Logarithmic scale
As shown in the table, for most examples our tool generates assumptions that are sig-

nificantly smaller (in some cases, a factor of 20) than the repaired and the original M2. In
addition, for examples needed repair, in most cases our tool needed 2-5 iterations of re-
pair in order to successfully construct a repaired component. Example infiniteBugs models

15

a simple structure in which due to a loop in M2, the same alphabet sequence can generate
infinitely many error traces. Therefore, the exact repair method timed out, since it attempted
to remove one error trace at a time. On the other hand, the aggressive repair method removes
all accepting states, creating an empty program, a trivial (yet valid) repair. Examples with
prefix client or protocol describe correct behaviour of a server communicating with several
clients, while examples contain client error describe erroneous protocols that require both
semantic and syntactic repairs, which our tool finds and repairs.
Example M1 Size M2 Size P Size Time (sec.) A size Repair Size Repair Method Iterations
constraintsComplex 4 4 3 0.2 3 verification
constraintsComplex2 16 16 3 1.8 4 verification
constraintsComplex3 32 32 3 11.1 6 verification
constraintsComplex4 64 64 3 95 7 verification

error1 2 3 2
0.08 3 3 aggress. 2
0.09 4 4 approx. 2

0.108 6 9 exact 2

error2 2 27 2
0.106 5 27 aggress. 2
0.126 6 28 approx. 2
0.132 8 81 exact 2

error3 2 81 2
0.13 6 81 aggress. 2

0.138 7 82 approx. 2
0.165 9 243 exact 2

error4 2 243 2
0.15 8 243 aggress. 2
0.17 8 244 approx. 2

0.223 10 729 exact 2
client1 2 4 3 0.093 3 verification
client2 3 16 4 0.29 13 verification
client4 5 256 6 4.88 92 verification
client1 c 2 4 3 0.08 3 verification
client2 c 3 16 4 0.22 10 verification
client4 c 5 256 6 4.44 109 verification

client2 c error 3 16 5
0.69 12 16 aggress. 5
0.28 13 18 approx. 3
4.27 44 864 exact 5

client4 c error 4 256 8
6.63 113 256 aggress. 2
5.94 113 257 approx. 2

12.87 155 1280 exact 2
client1 c constraints 2 3 4 0.075 3 verification

client1 error cons 2 3 4
0.34 5 4 aggress. 2
0.37 5 4 approx. 2

0.488 5 4 exact 2

client2 error cons 3 16 5
1.07 18 18 aggress. 3
1.12 18 18 approx. 3
1.26 18 18 exact 3

Protocol1 9 6 15 0.1 6 verification
Protocol2 11 13 17 0.18 11 verification

infiniteBugs 2 4 2
0.09 1 4 (trivial) aggress. 4
0.21 6 8 approx. 5

timeout exact timeout

Table 1: AGR algorithm results on various examples

16

References
1. A. Albarghouthi, I. Dillig, and A. Gurfinkel. Maximal specification synthesis. In POPL, 2016.
2. B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of variables in programs. In

POPL, 1988.
3. D. Angluin. Learning regular sets from queries and counterexamples. Inf. Comput., 75(2).
4. S. Chaki and O. Strichman. Optimized L*-based assume-guarantee reasoning, TACAS, 2007.
5. Y.-F. Chen, E. M. Clarke, A. Farzan, M.-H. Tsai, Y.-K. Tsay, and B.-Y. Wang. Automated assume-

guarantee reasoning through implicit learning. In CAV, 2010.
6. Y.-F. Chen, A. Farzan, E. M. Clarke, Y.-K. Tsay, and B.-Y. Wang. Learning minimal separating

DFA’s for compositional verification. In TACAS, 2009.
7. J. M. Cobleigh, D. Giannakopoulou, and C. S. Pasareanu. Learning assumptions for composi-

tional verification. In TACAS 2003.
8. L. De Moura and N. Bjørner. Z3: An efficient smt solver. In TACAS, 2008.
9. I. Dillig and T. Dillig. Explain: A tool for performing abductive inference. In CAV, 2013.

10. K. A. Elkader, O. Grumberg, C. S. Pasareanu, and S. Shoham. Automated circular assume-
guarantee reasoning. In FM, 2015.

11. K. A. Elkader, O. Grumberg, C. S. Pasareanu, and S. Shoham. Automated circular assume-
guarantee reasoning with n-way decomposition and alphabet refinement. In CAV, 2016.

12. M. Gheorghiu, D. Giannakopoulou, and C. S. Pasareanu. Refining interface alphabets for com-
positional verification. In TACAS, 2007.

13. D. Giannakopoulou, C. S. Pasareanu, and H. Barringer. Assumption generation for software com-
ponent verification. In 17th IEEE International Conference on Automated Software Engineering
(ASE 2002), 23-27 September 2002, Edinburgh, Scotland, UK, pages 3–12. IEEE Computer So-
ciety, 2002.

14. D. Giannakopoulou, C. S. Pasareanu, and H. Barringer. Component verification with automati-
cally generated assumptions. Autom. Softw. Eng., 12(3):297–320, 2005.

15. A. Gupta, K. L. McMillan, and Z. Fu. Automated assumption generation for compositional
verification. Formal Methods in System Design, 32(3):285–301, 2008.

16. B. Li, I. Dillig, T. Dillig, K. L. McMillan, and M. Sagiv. Synthesis of circular compositional
program proofs via abduction. In TACAS 2013.

17. S. Lin and P. Hsiung. Compositional synthesis of concurrent systems through causal model
checking and learning. In FM 2014: Formal Methods - 19th International Symposium, Singapore,
May 12-16, 2014. Proceedings, pages 416–431, 2014.

18. J. Magee and J. Kramer. Concurrency - state models and Java programs. Wiley, 1999.
19. K. L. McMillan. Circular compositional reasoning about liveness. In CHARME, 1999.
20. J. Misra and K. M. Chandy. Proofs of networks of processes. IEEE Trans. Software Eng.,

7(4):417–426, 1981.
21. K. S. Namjoshi and R. J. Trefler. On the competeness of compositional reasoning. In CAV, 2000.
22. C. S. Pasareanu, D. Giannakopoulou, M. G. Bobaru, J. M. Cobleigh, and H. Barringer. Learning to

divide and conquer: applying the L* algorithm to automate assume-guarantee reasoning. Formal
Methods in System Design, 2008.

23. C. Peirce and C. Hartshorne. Collected Papers of Charles Sanders Peirce. Belknap Press, 1932.
24. A. Pnueli. In transition from global to modular temporal reasoning about programs. In Logics

and Models of Concurrent Systems, NATO ASI Series, 1985.
25. R. Singh, D. Giannakopoulou, and C. S. Pasareanu. Learning component interfaces with may and

must abstractions. In Computer Aided Verification, 22nd International Conference, CAV 2010,
Edinburgh, UK, July 15-19, 2010. Proceedings, pages 527–542, 2010.

26. V. Weispfenning. Quantifier elimination and decision procedures for valued fields. Models and
Sets.Lecture Notes in Mathematics (LNM), 1103:419––472, 1984.

17

Appendix
A Proofs: Traces and Feasible Traces
Definition 8. Let t be a trace over alphabet α, and let α′ ⊆ α. We denote by t ↓α′ the trace
obtained from t by omitting all letters in t that are not in α′.

Example 4. Let α = {g!x, x := x+ 1, x < 10}, α′ = {g!x, x := x+ 1} and let t = (x :=
x+ 1, x := x+ 1, x < 10, g!x). Then t↓α′= (x := x+ 1, x := x+ 1, g!x).

Lemma 3. Let M be a program and P be a property, and let t be a trace of M × P . Then
t ↓ αM is a trace of M .

Proof. Let M = (QM , XM , αM, δM , q
M
0 , FM) and M = (QP , XP , αP, δP , q

P
0 , FP), and

denote M × P = (Q,XM , α, δ, q0, F)
Let p = (q0, c1, · · · , cm, qm) be the path inM×P such that t is induced from p. Denote

by tM = t ↓αM= (ci1 , · · · , cin).
We first observe the following. If (a1, · · · , ak) is a trace of M × P such that ∀i : ai /∈

αM , and q = (qM , q
0
P) is the state in M × P before reading a1, then ∀i ≥ 1 : ∃qiP :

δ((qM , q
i−1
P), ai) = (qM , q

i
P). That is true since from the definition of δ, if ai is not in αM ,

then δ((q′M , q
′
P), ai) = (q′M , δP (q′P)). Informally, it means that δ only advances in the P

component and not in the M component.
We now inductively prove that ∀j ≥ 1 : (ci1 , · · · , cij) is a trace of M . Let j := 1 and

denote k := i1. Then c1, . . . , ck−1 /∈ αM . Thus, ∀1 ≤ i < k : ∃qiP : δ((qM0 , qPi−1), ci) =

(qM0 , qPi). For ci1 = ck ∈ αM , from the definition of δ, we have δ((qM0 , qPk−1) = (δM (qM0 , ci1), q′)

from some q′ ∈ QP . Then indeed, (qM0 , ci1 , δM (qM0 , ci1)) is a path in M , making (ci1) a
trace of M .

Let j > 1, and assume tj−1 = (ci1 , · · · , cij−1
) is a trace ofM . Let (q0, ci1 , · · · , cij−1

, qj−1)
a path that induces tj−1. Denote ij−1 = k, ij = k + m for some m > 0. Then, as before,
ck+1, . . . , ck+m−1 /∈ αM , thus ∀k < l < k + m : ∃qlP : δ(qj−1, q

l−1
P), cl) = (qj−1, q

l
P).

For cij it holds that δ(qj−1, qk+m−1P), cij) = (δ(qj−1, cij), q′)) for some q′ ∈ QP . Thus
(ci1 , · · · , cij) is a trace of M , as needed. ut

Lemma 4. Let M1,M2 be two programs, and let t be a trace of M1||M2. Then t ↓ αM1 is
a trace of M1 and t ↓ αM2 is a trace of M2.

The proof is almost the same as the proof of Lemma 3.

Lemma 5. LetM be a program and P be a property, and let t be a feasible trace ofM×P .
Then t ↓ αM is a feasible trace of M .

Proof. Let t ∈ T (M × P) be a feasible trace. Then, there exists a run u on t. Denote
u = (β0, b1, β1, · · · , bn, βn) and t = (b1, · · · , bn). We inductively build a run r on t ↓αM .
The existence of such a run r proves that t ↓αM is feasible.

Let t ↓αM= (c1, · · · , ck). We define r = (γ0, c1, γ1, · · · , ck, γk) as follows.
– Set j := 0, i := 0.
– Define γ0 := β0 and set j := j + 1.
– Repeat until j = k : Let i′ > i be the minimal index such that bi′ = cj . Then, define
γj := βi′ and set j := j + 1, i := i′ + 1.

18

Note that for each i < l < i′ is holds that bl is a constraint. This is true since if bl is not
a constraint, then bl ∈ αM . But in that case, bl has to synchronize with some alphabet letter
in t ↓αM , contradicting the fact that i′ is the minimal index for which bi′ = cj . Thus, since
u is a run, and for all i < l < i′ : bl is a constraint, it holds that ∀i ≤ l < i′ : βi = βl. In
particular, it holds that βi′−1 = βi = γj−1. Now, since bi′ = cj , we can assign γj to be the
same as bi′ and result in a valid assignment. Thus, r is a valid run on t ↓αM , making t ↓αM
feasible as needed. ut

Lemma 6. Let M1,M2 be two programs, and let t be a feasible trace of M1||M2. Then
t ↓ αMi is a feasible trace of Mi for i ∈ 1, 2.

The proof of Lemma 6 is different from the proof of Lemma 5, since here we cannot
longer use the exact same assignments as the ones of the run on M1||M2. In the case of
M × P , the variables of M × P are the same as the variables of M , and the two runs only
differ on the constraints that are added to the trace of M × P . Here M1 and M2 are defined
over two different sets of variables, with empty intersection between them. Nevertheless,
The proof is similar to the proof of Lemma 5.

Proof. Denote by Xi the set of variables of Mi for i ∈ {1, 2}. Let t ∈ M1||M2 be a
feasible trace. Then, there exists a run u on t. Denote u = (β0, b1, β1, · · · , bn, βn) and
t = (b1, · · · , bn). We build a run r on t ↓αM1

as follows (in the same way, we can build
a run on t ↓αM2). Let t ↓αM1= (c1, · · · , ck). We define r = (γ0, c1, γ1, · · · , ck, γk) as
follows.

– Set j := 0, i := 0.
– Define γ0 := β0(X1) and set j := j + 1.
– Repeat until j = k : Let i′ > i be the minimal index such that bi′ = cj or bi′ =

(g ∗x, g ∗ y) and cj = g ∗x. Then, define γj := βi′(X1) and set j := j+ 1, i := i′+ 1.
Note that for each i < l < i′ is holds that bl /∈ αM1 and there are no x ∈ X1, y ∈ X2

such that bl = (g ∗ x, g ∗ y) for g ∗ x ∈ αM1. Otherwise, bl is either a synchronization
between M1 and M2, or bl is a letter of M1 that must synchronize with t ↓αM1

. Both are
contradiction to the fact that i′ is the minimal index for which bi′ , cj synchronize. Thus,
since u is a run, and for all i < l < i′, bl does not contain variables of X1, by the definition
of a run, it holds that βi(X1) = βl(X1), since an assignment to a variable may only change
if the variable is involved in the action alphabet. In particular, it holds that βi′−1(X1) =
βi(X1) = γj−1(X1). Now, we can assign γj to be the same as bi′(X1) and result in a valid
assignment, as needed. ut

B Soundness and Completeness of AG Rule for Communicating
Programs

Theorem 2. For communicating programs, the Assume-guarantee rule is sound and com-
plete. That is:

– Soundness: If M1||A � P and T (M2) ⊆ T (A) then M1||M2 � P .
– Completeness: If M1||M2 � P then there exists an assumption A such that M1||A � P

and T (M2) ⊆ T (A).

Proof. Completeness. If M1||M2 � P , then we can choose A = M2, and then it holds that
M1||A � P and T (M2) ⊆ T (A).

19

Soundness. Assume by a way of contradiction that there exists an assumption A such
that M1||A � P and T (M2) ⊆ T (A), but M1||M2 2 P . Therefore, there exists an error
trace t ∈ (M1||M2)×P . From Lemma 3 and Lemma 4, it holds that t2 = t ↓αM2

∈ T (M2)
and is feasible. Since T (M2) ⊆ T (A), it holds that t is an error trace in (M1||A) × P ,
contradicting M1||A � P . ut

C Incremental Learning
An important feature of our AGR algorithm is its incrementality. We thus prove the

following.

Theorem 3. Let T (M i
2) be the language learned by phase i of the AGR algorithm. Assume

that phase i ended with a counterexample t and initiated a call to REPAIR(M i
2, t). Then:

1. For every trace t2 that was queried before, the answer remains the same for T (M i+1
2).

2. AGR did not query t ↓αMi
2

before, thus removing it from T (M i+1
2) is consistent with

all previous queries.
3. If t′2 is a trace learned using abduction, then AGR did not query it before.

Proof. Item 1. Consider the two cases. If t2 was answered ”t2 ∈ T (Aj)” for some previous
iteration j , then in particular it holds that M1||t2 � P (line 9 of AGR algorithm). Since M1

and P are remained unchanged, then in all next iterations the same holds for t2. Since We
only syntactically remove a trace t from T (M j

2) if is it an error trace, we conclude that for
every j, t2 is never removed from T (M j

2). Thus, line 9 always holds for t2.
If t2 was queried before and the answer was ”t2 /∈ T (Aj)”, then one of the following

holds; M1||t2 2 P and as in the previous case, this remains true for all future iterations; Or,
t2 /∈ T (M j

2) for some previous iteration j. Since we only remove traces, it holds that for
every j < j′, T (M j

2) ⊆ T (M j′

2). Thus, t2 /∈ T (M i+1
2) as needed.

Item 2. Assume by a way of contradiction that AGR queried t ↓αMi
2

before. Since
AGR called REPAIR, it holds that t is an error trace in (M1||t ↓αMi

2
) × P . Thus, it cannot

be the case the AGR answered ”t ↓αMi
2
∈ T (Aj)” on t ↓αMi

2
previously (from Item 1).

Moreover, if t ↓αMi
2

was queried in a previous iteration and was answered ”no”, i.e.,
”t ↓αMi

2
/∈ T (Aj)”, then due to the nature of L∗, t ↓αMi

2
cannot be queried again.

Item 3 Since t′2 contains a new alphabet letter, it for sure was not queried in any previous
iteration.

ut

D Correctness of AGR Algorithm
We now prove the Correctness of AGR algorithm. In particular, the proof of Theorem 4

follows.

Theorem 4. 1. If M1||M2 � P then AGR terminates with a correct answer.
2. If an iteration i of AGR ends with an error trace t, then M1||M i

2 2 P , where M i
2 is the

updated system at iteration i.
3. If M1||M2 2 P then M ′2, the system post REPAIR, contains less bad traces than M2.
4. If, after finitely many iterations, a repaired program M ′2 is such that M1||M ′2 � P , then

AGR terminates with a correct answer. (Note that this is a generalization of the first
part of the theorem).

20

Theorem 5. Every iteration of the AGR algorithm terminates and is consistent with T (M i
2).

That is, whenever AGR returns “t ∈ T (Aij)” to L∗ (lines 9, 20) then indeed t ∈ T (M i
2),

and whenever AGR returns “t 6∈ T (Aij)” to L∗ (lines 11, 27) then indeed t 6∈ T (M i
2).

Proof. For one iteration of AGR, we show that both membership queries and equivalence
queries are consistent with T (M i

2). Since L∗ is an algorithm for learning a regular language,
and since T (M i

2) is a regular language, by the termination of L∗ we conclude that each
iteration terminates.

To show consistency with T (M i
2), note that for t2 ∈ (αM i

2)∗, membership queries are
of the form“is t2 ∈ T (M i

2)?”. The only case in which the algorithm does not return the
same answer as the teacher does, is when t2 ∈ T (M i

2) and M1||t2 2 P . In this case we
conclude that M1||M i

2 2 P and thus REPAIR is called and the iteration terminate immedi-
ately. Therefore membership queries are consistent with T (M i

2).
As for equivalence queries, the teacher returns counterexamples toL∗ in lines 20 and 27.

In line 20 we find a trace t2 ∈ T (M i
2), therefore the answers on t2 should be “yes”, as we

indeed return. In line 27, we found t2 /∈ T (M i
2), thus the answer should be “no”, as we

indeed return. Therefore, the L∗ algorithm constantly converges towards T (M i
2). ut

Theorem 6. If M1||M i
2 � P , the AGR algorithm terminates. Otherwise, AGR finds a coun-

terexample, proving that M1||M i
2 2 P (and continues to repairing M i

2).

Proof. Termination follows directly from Theorem 5. Since all answers are syntactic ac-
cording to T (M i

2), which is a regular language, from the correctness of L∗ algorithm we
conclude that the algorithm will eventually learn T (M i

2). Note that a phase of the algo-
rithm terminates in lines 5, 16 or 24. We are left to prove that if the algorithm learns exactly
T (M i

2), then one of the three cases holds.
If M1||M i

2 � P , then since the learned assumption A is exactly T (M i
2), it holds that

M1||A � P and T (M i
2) ⊆ T (A), thus the algorithm terminates in line 16.

If M1||M i
2 2 P , then there exists an error trace t ∈ (M1||M2)× P . From Lemmas 5, 6

it holds that t ↓αMi
2

is feasible in M2. In particular, it holds that t is an error trace of
(M1||t ↓αMi

2
)× P . Thus, M1||t ↓αMi

2
2 P . Since we learned exactly A = T (M i

2), it holds
that t2 ∈ T (A). Thus, either t2 shows up as a membership query, and then line 5 holds,
proving M1||M i

2 2 P and call REPAIR, terminating the iteration; or AGR continues to the
equivalence query part in which it holds that M1||A 2 P and every trace tA we find in this
case is such that tA ∈ T (M i

2), resulting in termination of the iteration in line 24, again, by
calling REPAIR. ut

Note that although each phase converges to T (M i
2), it may terminate earlier. We show

that in cases the algorithm terminates before finding T (M i
2), it returns the correct answer.

Theorem 7. L∗ terminates and returns the correct answer. That is:

1. If L∗ outputs an assumption A, then there exists i such that M1||A � P and T (M i
2) ⊆

T (A), thus we can conclude M1||M i
2 � P .

2. If a phase i of AGR ends with an error trace t, then M1||M i
2 2 P .

Proof. Assume AGR return an assumption A. We can then conclude that the following
holds for A: there exists i such that T (M i

2) ⊆ T (A) and M1||A � P . From the soundness
of our AG rule (Theorem 2) it holds that M1||M i

2 � P .

21

Assume now that a phase i of AGR ends with an error trace t. We prove that M1||M i
2 2

P . First note that AGR may output such a trace both while making a membership query and
while making an equivalence query. If t was found during a membership query(line 5), then
there exists t2 ∈ T (M i

2) such that M1||t2 2 P , and t ∈ (M1||t2)× P . Since t2 ∈ T (M i
2),

it holds that t is also an error trace of (M1||M i
2)× P , proving M1||M i

2 2 P .
If twas found during an equivalence query(line 24), then t is an error trace in (M1||Aij)×

P . Moreover, t ↓αAi
j
∈ T (M i

2). This makes t an error trace of (M1||M i
2)× P as well, thus

M1||M i
2 2 P . This finishes the proof.

ut

22

	Assume, Guarantee or Repair
	Hadar Frenkel1, Orna Grumberg1, Corina Pasareanu2 and Sarai Sheinvald3

