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Abstract. We present Assume-Guarantee-Repair (AGR) – a novel framework which
not only verifies that a program is error-free, but also repairs the program, in case the
verification fails. We consider simple C-like programs, extended with synchronous
communication actions over communication channels.
Our method uses compositional approach to modularly check the system for errors,
and to repair it. We fulfill the two tasks simultaneously: in every iteration of the pro-
cedure, we either make another step towards proving safety of the (current) system,
or remove the current vulnerability in a way that brings it closer to being safe. We
manage to handle infinite-state systems by using a finite abstract representation. We
describe our method and demonstrate the effectiveness of AGR on several examples
using existing SMT solvers, learning, and reachability analysis tools.

1 Introduction

For large-scale systems, verifying that a system is error-free is a main challenge in the field
of formal verification. Often, the verification process of such a system does not scale well.
Compositional verification aims to verify small components of a system separately, and
from the safety of the individual components, to conclude the safety of the entire system.
This, however, is not always possible, since the safety of a component often depends on
the behavior of its environment.

The Assume-Guarantee (AG) style compositional verification [5,8] suggests a solution
to this problem. The simplest AG rule checks if a system composed of components M1

and M2 fulfills a safety requirement P by checking that M1 under assumption A fulfills P ,
and that any system containing M2 as a component fulfills the safety assumption A. Sev-
eral frameworks have been proposed to support this style of reasoning. Finding a suitable
assumption A is then a common challenge in such frameworks.

In this work, we present Assume-Guarantee-Repair (AGR) – a fully automated frame-
work which applies the Assume-Guarantee rule, and while seeking a suitable assumption
A, incrementally repairs the given program in case a vulnerability is found. Our framework
is inspired by [6], which presented a learning-based method to finding an assumption A,
using the L∗ [1] algorithm for learning regular languages.

Our AGR framework handles communicating programs. These are infinite-state C-like
programs, extended with the ability to synchronously read and write messages over com-
munication channels. Sending messages over common channels as well as the ability of lo-
cal computations, make communicating programs a good model for security protocols. We
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model such programs as finite-state automata, similar to a representation as a control-flow
graph. Its advantage, however, is in the ability to exploit an automata-learning algorithm
such as L∗.

The L∗ algorithm aims at learning a (potentially unknown) regular language U . Its
entities consist of a teacher – an oracle who answers membership queries (“is the word
w in U?”) and equivalence queries (“is A an automaton whose language is U?”), and a
learner, who iteratively constructs a finite deterministic automaton A for U by submitting
a sequence of membership and equivalence queries to the teacher.

In using the L∗ algorithm for learning an assumption A for the AG-rule, membership
queries are answered according to the satisfaction of the safety requirement P : If M1 com-
posed with t is safe, then the trace4 t in hand should be in the assumption A. Otherwise,
t should not be in A. Once the learner constructs a stable system A, it submits an equiva-
lence query. The teacher then checks whether A is a suitable assumption, that is, whether
M1 composed with A is safe according to P , and whether the language of M2 is contained
in the language of A. The learning procedure aims at learning the weakest assumption Aw,
which contains all the traces that composed with M1 fulfill P . The key observation that
guarantees termination is that the components in this procedure – M1,M2, P and Aw – are
all regular.

Our setting is more complicated than the usual, since the traces in the components
contain constraints over program variables, which are to be checked semantically and not
syntactically. Moreover, Aw above may no longer be regular.

Our method manages to overcome this problem in a way that still guarantees termina-
tion in case the system is safe, and progress towards safety, otherwise.

As we have described above, our goal is not only to compositionaly prove that a system
is error-free, but also to remove vulnerabilities in case they exist. An AG-rule can either
conclude that the system is safe, or return a counterexample in the form of a trace that
contains a vulnerability of the system. In our case, instead of returning the counterexample,
we repair M2 in a way that eliminates this vulnerability. In order to do so, we infer new
constraints on the system, in a process called abduction [7]. We add the learned constraints
to the set of actions of M2 through the learning process to eliminate the erroneous trace.
We then return to the verification stage and try to prove that the repaired program is safe,
and so on.

Thus, AGR operates in a verify-repair loop, where each iteration runs a learning-based
process to determine whether the (current) system is safe according to the property P , and
if not, eliminates errors from M2 while enriching the set of constraints derived from these
errors, which often leads to quicker convergence.

Implementation To demonstrate the effectiveness of AGR, we implemented our AGR
framework and ran it on 16 examples designed to exercise different aspects of the ap-
proach. We used Spacer [3] as a model checker to answer verification questions, and
Z3 [2] to infer new constraints by abduction. We also integrated L∗ implementation from
the LTSA tool [4] in our AGR framework. The experiments provide proof of concept to
our algorithm. In the future we plan to robustify our implementation and to evaluate it
extensively in the context of autonomous systems and security protocols.

4 We refer to program behaviors as traces, as they are represented by traces of the automaton.



2 Example

We now present an example to demonstrate the process. Figure 1 presents a simple pro-
gram, M2, which reads a password as long as it has less than four digits. Once the password
is long enough, the program encrypts the password and sends it through a communication
channel. The figure demonstrates the program and its representation as an automaton.

1: while(true)
2: pass = ReadInput;
3 while(pass≤ 999)
4: pass=ReadInput;
5: pass2:=encrypt(pass);
6: return pass2;
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Fig. 1: Modeling a communicating program as an automaton M2

As mentioned in Section 1, we use a compositional approach in order to handle large
systems. In Figure 2 we present the environment of M2, namely M1, which preforms the
encryption of the password read by M2. The components M1 and M2 synchronize over
common channels, i.e., enc and return. The channel enc is used to communicate the value
of the password from M2 to M1, while the channel return is used to return the value of the
encrypted password (i.e. pass2) from the whole program.

Since we use automata learning in order to detect errors and repair them, the safety
property is too given as an automaton. The property P presented in Figure 2 requires that
if the password pass was entered and pass2 is the password returned after encryption, then
pass 6= pass2 . That is, the original password is not exposed. The property also requires the
encrypted password to be of at most 64 bits to avoid overflow. Nothing in the composition
of M1 and M2 enforces the password to be of at most 64 bits, and thus the systems does
not satisfy the property. A possible violation is the concrete trace t = read(2 63 ), 263 >
999, encrypt(263), pass2 = 263 · 2, return(264). The trace t violates the property P
since pass2 overflows with 64 bits. Therefore, we wish to eliminate t. We then use logical
abduction in order to learn the new constraint pass < 263 and locate it in M2 in a way that
ensures that for the encrypted password it holds that pass2 < 264.
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Fig. 2: The system environment E and the property P given as automata
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