
Learn Your Program
Hadar Frenkel1 ∗, Orna Grumberg1 and Sarai Sheinvald2

1 Department of Computer Science, The Technion, Israel
2 Department of Software Engineering, ORT Braude College, Israel

Abstract—We introduce a synthesis framework for quantifier-
free first-order LTL formulas over program variables. Such
formulas are natural for specifying security requirements. Our
framework uses automata learning to construct the program, as
well as Hoare logic in order to reason about the program seman-
tics and abstract the program states. Hoare logic also supply us
with a proof of correctness for the program. We aim to learn
not only the program, that is, the program states and transitions,
but also to infer the program statements using abduction. Since
this is an ongoing work, We discuss problems of termination,
inference of Hoare predicates, and inference of new program
statements. Our algorithm will allow automatically elimination
of security vulnerabilities by constructing safe programs.

I. INTRODUCTION

In program verification, we verify that a program satisfies
a given specification. We then say that the program is correct.
In program synthesis, instead of trying to prove correctness
of a given program, we wish to build a correct program,
with respect to the specification. In this work we consider
quantifier-free first-order LTL (FO-LTL) specifications, which,
instead of atomic propositions, contain predicates over the
program variables. FO-LTL is a natural logic for expressing
security vulnerabilities within a program, such as array out of
bound, or memory leaks. We then use program synthesis to
construct safe programs, that contain no vulnerabilities of the
specified kind. Moreover, we can use synthesis algorithms in
order to eliminate security vulnerabilities detected using other
methods (such as model checking). Once a vulnerability is
uncovered, a synthesis algorithm is required to determine how
to fix it.

An example for a specification in FO-LTL is ϕG F :=
G ((x = 0) → F (x > 0)) over the program variable x. We
then wish to build a program P , which all of its computations
satisfy ϕG F . We use ϕG F throughout the paper to demonstrate
our approach.

In order to construct such a program, we use automata
learning methods, derived from L∗ algorithm for learning
regular languages [1]. The resulted program is then in the
shape of a finite automaton, that can be viewed as the control-
flow graph of the program. From now on we refer to the
program as an automaton, over the alphabet Σ of program
statements. We later discuss the question of how we infer
program statements. For now, we assume such an alphabet
is given.

∗ This research was partially supported by the Technion Hiroshi
Fujiwara Cyber Security Research Center and the Israel National Cyber
Directorate.

Unlike standard automata learning, the alphabet here is
symbolic. Thus, syntactic checks for membership and equiva-
lence queries, needed in the automata learning process, are no
longer enough. We suggest a novel approach that combines
words over program statements, together with predicates over
the variables. The predicates behave as abstractions of the
automaton states. To do so, our words are sequences of Hoare
triplets [7] over the program statements. We thus learn an
annotated program, where the annotations of the states provide
us with a proof of correctness. Moreover, Hoare triplets allow
us to adjust learning to semantic queries. They also allow us
a succinct construction of the program and a more efficient
teacher for the learning process.

II. LEARNING AUTOMATA OVER PROGRAM STATEMENTS

Let ϕ be a FO-LTL specification. The language of ϕ,
denoted by L(ϕ), is the set of all computations satisfying ϕ.
Note that this definition does not restrict us to a certain
alphabet. In the synthesis problem, we wish to learn a program
P , such that L(P ) ⊆ L(ϕ). Recall that P is an automaton.
Then, the above means that every computation of the program
satisfies the specification. In case we have such a program P ,
we say that P is correct with respect to ϕ.

Given a specification ϕ, we use a variation on L∗ algorithm
for automata learning [1] in order to learn a correct program
P with respect to ϕ. Our algorithm, as L∗, consists of two
entities; a learner, who preforms queries in order to construct
an automaton for the language; and a teacher, who answers the
queries. There are two types of queries; membership queries,
in which the learner asks whether a given word is in L(P ); and
equivalence queries, in which the learner presents a candidate
automaton A and asks if the automaton is correct, i.e., if
L(A) ⊆ L(ϕ). In case the automaton is not correct, the teacher
returns a counterexample c ∈ L(ϕ)∆L(A) where ∆ is the
symmetric difference operator. The learner then returns to the
membership queries phase with an answer on the word c, and
tries to construct a new candidate automaton.

In the case of regular languages over finite alphabets, L∗

algorithm is guaranteed to terminate. One question we are
yet to resolve is termination in case of semantically irregular
requirements. Note that every FO-LTL specification is syntac-
tically regular, since we can build an automaton describing
it, relating to the predicates in the specification as atomic
propositions and ignoring their semantics, similar to [3].

Unlike the standard L∗, which handles finite alphabets, here
we use symbolic program statements. Therefore, we can no



longer ask syntactic questions. In order to allow symbolic
construction, we use Hoare sequences. A Hoare sequence
is s = 〈p1〉α1〈p2〉α2〈p3〉 · · · 〈pn−1〉αn−1〈pn〉 where each
〈pi〉αi〈pi+1〉 is a valid Hoare triplet, and ∀i : αi ∈ Σ, that
is, αi is a program statement.

Before we discuss the nature of the membership and equiv-
alence queries, we first introduce the teacher.

A. The Teacher: Modeling the Specification

In order to answer membership and equivalence queries,
we build a tableau Tϕ [2] out of the specification ϕ. In the
construction, we refer to the predicates in ϕ as atomic propo-
sitions. Nevertheless, we use the semantics of the predicates
in order to find a more succinct tableau; we can remove states
that are labeled with (at least) two predicates p1 and p2 such
that p1 ∧ p2 → false .

Infinite Words vs. Finite Computations: Usually, LTL for-
mulas describe ongoing computations, whereas the programs
we construct consist of finite computations. For that, we can
use semantics of LTL over truncated paths, as proposed for
example in [5] or in [6].

B. Membership Queries

Given a Hoare sequence s = 〈p1〉α1〈p2〉 · · ·
〈pn−1〉αn−1〈pn〉, we wish to know whether s ∈ L(P ).
To do so, we check sp = 〈p1〉〈p2〉 · · · 〈pn〉, against the
tableau Tϕ. Note that both Tϕ and sp are over predicates
only, without program statements. While checking sp against
Tϕ, we do not search for a syntactic containment, but rather a
semantic one. That is, we check if sp satisfies the predicates
on the states of Tϕ. The teacher answers “yes” on s iff there
is a semantic containment.

Lemma 1. sp is semantically contained in Tϕ iff sp satisfies ϕ.

Example 1. Consider ϕG F from Section I and the Hoare
sequence s = 〈true〉x := 0〈x = 0〉x := 1〈x > 0〉. Since
the sequence 〈true〉〈x = 0〉〈x > 0〉 satisfies ϕ, it holds that
s ∈ L(P ).

C. Constructing a Candidate Program

Every predicate used in the Hoare sequences is in fact an
abstraction of a state in the program automaton. Now, in order
to construct the automaton, we need to know the transition
relation. Usually, for each state there must be exactly one
transition with each alphabet letter, to make the automaton
deterministic and complete. Here, we look for semantic de-
terminism. We use the Hoare triplets to construct transitions
for every possible value at this abstract state; we can ignore
values that result in infeasible words. Hoare triplets allow us
then to eliminate some transitions, without asking the teacher,
since they are infeasible. Since every state is annotated with
a predicate over the program variables, we can know, for
example, that the word 〈true〉if (x > 0)〈x > 0〉 · if (x < 0)
is infeasible, and we can choose to not query it. Thus,
to construct the transition relation, for every existing state
represented by a Hoare sequence s, we query about s · α〈p〉,

where s · α〈p〉 is feasible. We then follow L∗ to construct a
complete transition relation and present a candidate automaton.

D. Equivalence Queries

Once a candidate automaton is constructed, the leaner asks
the teacher whether it is correct. For a specification ϕ and a
candidate A, we can check if L(A) ⊆ L(ϕ) by constructing
a tableau for ¬ϕ and check if A ∩ T¬ϕ = ∅.

E. Termination

We are yet to study the termination of the process. In par-
ticular, we study the termination of each candidate generation
phase. Once a candidate A is presented, we can artificially
create a correct program by taking P = A∩Tϕ. Thus, we can
manually terminate the process given a candidate program, in
case the whole process does not converge.

III. PROGRAM ALPHABET

As an initial alphabet for the first iteration of membership
and equivalence queries, we aim to infer program statements
from the specification. For example, from the specification
ϕG F we can infer the program statements {if (x ≤ 0), if (x >
0), if (x = 0), if (x 6= 0), x := 1}. The assignment x := 1
is of course a very simplistic solution for x > 0 appears in
the specification. We work towards obtaining more general
statements in the process of learning. In addition, we look for
examples for which such predefined alphabet is not enough. In
such cases, we wish to use abduction [4] in order to learn new
alphabet letters for the program. We look for characterizations
of failed membership or equivalence queries, for which we
can say that in order to satisfy the specification we need new
program statements.

IV. SUMMARY

We suggest a new synthesis framework for FO-LTL spec-
ifications, using automata learning and Hoare logic. We use
Hoare triplets to reason about the semantics of the program
and suggest a succinct program construction. We aim to learn
program statements when needed, using abductive inference.

We can then use FO-LTL to describe previously detected
security vulnerabilities, and apply our algorithm to construct
programs free from these vulnerabilities.

A. Open Questions

Termination of Learning: we study the terms for termi-
nation of the learning process, since there might be cases for
which the membership queries phase does not converge into
a candidate automaton.

Alphabet Inference: we are yet to determine how to infer
the initial alphabet out of the specification, and to decide when
to use abduction in order to infer new alphabet letters.

Use of Hoare Triplets: throughout the paper we assumed
the predicates for Hoare triplets are known, but it is not the
case. We study the inference of predicates for Hoare triplets.
This is crucial for our algorithm since these predicates behave
as states abstraction and proof of correctness to the program.



REFERENCES

[1] D. Angluin, Learning regular sets from queries and counterexamples, Inf.
Comput. (1987).

[2] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang,
Symbolic model checking: 10ˆ20 states and beyond, Inf. Comput. (1992).

[3] S. Demri, Linear-time temporal logics with presburger constraints: an
overview, Journal of Applied Non-Classical Logics (2006).

[4] I. Dillig and T. Dillig, Explain: A tool for performing abductive inference,
CAV, 2013.

[5] C. Eisner, D. Fisman, J. Havlicek, Y. Lustig, A. McIsaac, and D. V.
Campenhout, Reasoning with temporal logic on truncated paths, Cav,
2003.

[6] D. Fisman and H. Kugler, Temporal reasoning on incomplete paths, Isola,
2018.

[7] C. A. R. Hoare, An axiomatic basis for computer programming, Commun.
ACM (1969).


